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Abstract

More and more users use mobile devices to retrieve 
dynamic web pages in the wireless networks. Caching 
dynamic pages becomes very important due to the 
power constraint of mobile devices. In this paper, we 
first introduce a framework to cache and manage the 
dynamic web pages on the server side such that these 
dynamic pages can also be cached in the mobile 
devices. Then we propose a stateful IR-based 
approach which only records two numbers, the 
number of web pages updated and the number of web 
pages updated and also queried after they are updated 
on the server in an IR interval. Recording these two 
numbers dramatically reduces the IR size. The 
experiments show that our proposed approach 
combined with the Timestamp and UIR algorithms 
consumes the power around 40~47% less than the 
original Timestamp and UIR. Also, our method 
performs better than the Perfect Server that has the 
full knowledge of the contents stored in all the mobile 
client’s caches in terms of power consumption.  

Keywords: Cache consistency, dynamic web pages, 

invalidation report, mobile environments, power 

conservation. 

1. Introduction 

HTTP is used by Web servers, proxies, and 

browsers for the transfer of Web documents. It was 

originally designed for browsing static documents. 

However, during the last decade, the development of 

World Wide Web is changing from static to dynamic 

pages. Dynamic contents are constructed based on 

personalized service and request parameters at the time 

the document is requested. For those dynamically 

generated documents that may change on every request, 

the expiration time is always set to “now” to disable 

cache. Although the web pages generated by server-

side scripts are called "dynamic", they may not change 

in every second. A lot of dynamic web pages are 

intrinsically static, not changed in a period of time. The 

same pages have been transmitted over the same 

network links again and again to thousands of different 

users. Caching can be very effective at reducing 

network bandwidth consumption as well as balancing 

servers’ load. 

The challenge in designing applications that access 

dynamic data (e.g., stock, weather) is to ensure that 

displayed values are coherent with the data on the 

server. We address the coherent problems that arise 

from accessing dynamic web data when using mobile 

devices. Previous works focus on how to maintain 

consistency between the server and proxy [6], [7]. 

They proposed to use push, pull or hybrid schemes to 

maintain the data consistency. Since the proxy and 

server are on the wired network, the proxy can receive 

updates immediately. Proxy maintains the data 

consistency in wired network and informs stale pages 

to mobile clients through the wireless networks.  

Because of the space limit, we do not describe the 

existing web cache schemes and invalidation report 

(IR) strategies [1] in this paper. Web caches are used 

to cache dynamic web documents while invalidation 

strategies broadcast invalidation reports to invalidate 

stale pages on the client side. 

In this paper, we extend the dynamic page caching 

framework to cache dynamic pages accessing remote 

databases. Based on the access log of the web server 

and query and update logs of the database server, the 

dynamic web pages that access databases can be easily 

cached on the server side and the client side. In the 

proposed framework, Bloom filter is also used to 

manage the data consistency between the server and 

clients.  

Next, we shall propose a stateful approach that can 

avoid broadcasting the timestamps of some web pages 

that are queried after their updates. The proposed 

stateful approach can be integrated to the existing IR-

based caching schemes in the wireless environment to 

reduce the power consumption. We also conduct 

simulations to show that the proposed scheme can 

perform better than the original IR-based schemes. 

The rest of this paper is organized as follows:. The 

Section 2 introduces a framework and proposed a 

stateful IR approach. The simulation model is 
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described in Section 3. Finally, the conclusion is given 

in the last Section.  

2. Proposed scheme 

In this section, we first introduce our previous work 

[5] to how to make dynamic pages cacheable and then 

extend it by considering how the validity of cached 

pages is affected when databases queried by these web 

pages are updated. Second, we use Bloom filter to 

efficiently broadcast the hash values rather than full 

URLs to indicate the stale web pages. Finally, we 

propose a stateful approach to improve the 

performance of the methods using the invalidation 

report. 

In order to cache dynamic pages on the mobile 

clients and maintain the cache consistency efficiently, 

the following tasks must be completed: (1) Making 

dynamic web page cacheable. (2) Knowing which 

cached pages on the server side are stale. (3) 

Maintaining page consistency on the client side. 

2.1. Making dynamic web page cacheable 

We make the dynamic pages cacheable by the 

following framework.  The proposition we make is that 

the cached web pages must be fresh all the time. All 

the stalled web pages will be updated or deleted by the 

cache manager that acts as a backend process to 

perform the cache management asynchronously. The 

system architecture of the proposed caching system is 

shown in Fig. 1. 

All cached pages are stored in a directory called 

Cache Directory. If the requested page exists in Cache 
Directory, Web Server could response it directly. 

Otherwise, we first trigger Application Server to 

generate the requested page. The newly generated page 

prefixed with appropriate HTTP Cache-Control 

headers is then replied to the client. The replied page is 

also stored in Cache Directory as a static file.  

Two URL format types are used in proposed 

caching system. The URL format type A (e.g., 

http://host/abs_path/page?k1=v1&k2=v2) is the 

traditional URL format with the query string when the 

client requests a dynamic web page using the GET 

method. Since type A URL contains a question mark 

(?), the client side cache usually does not cache this 

page. In order to remove the question mark from the 

URL of a page and this make it cacheable, we define a 

static URL format called type B URL (e.g., 

http://host/abs_path/page!k1=v1&k2=v2.html). Type B 

URLs are the ones that are released to the public and 

used by users. Type A format is only used internally in 

the proposed caching system. We reply the client’s 

requests in static page format, so they can be cache by 

Web browsers on the client sides and Proxy servers. 

Embedding the pairs of keyword and value in URL 

using GET method loses the flexibility of users’ inputs. 

This is where POST method comes from. To imitate 

the actions of POST method, we allow users input the 

keywords and values but still using type B format. This 

can be done by a simple javascript code [5]. 

The request URL could be for a dynamic page or for 

a static page. URL Switch first checks whether or not 

the requested page exists in Cache Directory. If the 

requested page exists, it is returned to the client by 

Web Server directly. When the requested page does not 

exist, and the type B URL is first converted to Type A 

format and the request is passed to Application Server
to generate and cache the requested page. 

For example, if the client requests for 

/cachedir/calculate.php!v1=2&v2=3.html and this does 

not in Cache Directory. Then URL Switch will 

translate the URL into /calculate.php?v1=2&v2=3. 

Application Server first call calculate.php to generate 

the page, attach it with appropriate Cache-Control 

headers, and store the dynamic page into Cache 

Directory with the name 

calculate.php!v1=2&v2=3.html. Application Server
must inform Cache Manager that the dynamic page is 

stored as a static page in Cache Directory. So, Cache 
Manager can maintain this newly generated static 

page in Cache Directory.

Cache Manager is in charge of the cache files in 

Cache Directory. It is behind the web server. Only 

Application Server can inform it about the newly 

generated pages. Database will change with time, so 

we will get different result at different times if queried 

with the same input arguments. Our Cache Manager
uses mapping file and update log file to maintain cache 

pages consistency in Cache Directory.

2.2. Knowing which cached pages are stale 

Here we introduce the method for Cache Manager
to maintain the cached pages in Cache Directory.

Although cache manager can read database’s update 

log, it is about which entry in the database is inserted, 

updated or deleted. The major challenge is for creating 

a mapping between the cached web pages and the 

changes of underlying data in the database [3]. We 

separate mapping into two parts: (1) Request-to-Query 

mapping: the mapping between web pages and queries 

that are used for generating these pages. (2) Query-to-

Update mapping: mapping update log to query log. If 

database is updated, we use the update log to check 
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those affected queries and then invalidate the affected 

cache pages. 

The framework of our method is shown in Fig. 2. 

The data flow is as follows. When Web Server receives 

a client request, if the requested page is not in Cache 
Directory, Web Server decides which application 

program should serve the request and passes it to the 

Application Server. Also Web Server logs the request 

in the access_log file. When serving this request, 

Application Server will send a query to Database to get 

data. When we turn on the function of Database’s 

query log, database will log this query into the query 

log. So, Logger can read Web Server’s access_log and 

Database’s update log to generate Request-to-Query 

mapping. Cache Manager reads Database’s update log 

and mapping file to find out stale pages on the server. 

2.3. Maintaining page consistency in client side 

We adopt broadcasting invalidation report from 

server rather than sending If Modify Since from client 

to check the validity of cached pages. Also, the 

number of the web pages is not fixed. There is no fixed 

map table for mapping an id onto a data item. 

Therefore it is not possible to re-send the map table to 

all the clients when the map table is changed because 

broadcasting whole URL to indicate stale pages wastes 

too much energy. We reduce the invalidation report 

timestamp size by using the Bloom filter. 

2.3.1. Managing URLs efficiently 

Broadcasting complete URLs to indicate which 

pages are stale wastes much wireless bandwidth 

because the URL length is not fixed and the average 

URL length is longer than 40 bytes. To avoid 

broadcasting the complete URL of a web page to the 

clients, we proposed to use a fixed length encoded 

URL and Bloom filter [2], [8]. Bloom filter is a 

computationally efficient hash-based probabilistic 

scheme that can encode a set of strings of various 

lengths with minimum memory requirement. Checking 

the existence of a string incurs no false miss and a very 

small possibility of false hits. 

Currently, for a URL, we select the first 64 bits from 

its 128-bit MD5 value as the fixed length encoded 

URL called encURL. Each client maintains a Bloom 

filter of 65536 bits to record which pages are stored in 

the client’s cache. In the current design, we use four 

hash functions in the Bloom filter. Naturally, the 64-bit 

eURL is split into four 16-bit segments that are used 

for the four hash functions of the Bloom filter. Thus, 

an IR consists of a list of (eURL, TS) pairs to represent 

the changed URLs and their timestamps.  

After receiving an IR, a client extracts four 16-bit 

values from each eURL and uses them to search its 

Bloom filter. The searching process is very efficient 

because only four bit positions are checked. If not all 

the four bits in the Bloom filter corresponding to these 

four extracted 16-bit values are turned on, then the 

client knows corresponding page is not in his cache. 

No further action is needed. Otherwise, the client uses 

the 64-bit eURL to locate the target page in the client’s 

cache and compare TS with the timestamp of the 

cached page to determine the validity of the page. 

Locating a page using the 64-bit eURL can be 

efficiently performed by a hash-based implementation 

used in Squid proxy [9]. We do not pass a whole 

Bloom filter (65536 bits) to the client on every IR 

interval.  

When a new web page is received and inserted into 

the client’s cache, the four bits corresponding to the 

eURL in the client’s Bloom filter must be turned on. 

To reduce the possibility of false hit, a simple counter 

associated with each bit in the Bloom filter can be 

employed as suggested in [10]. Also, the Bloom filter 

can be recomputed when the bit pressure (percentage 

of the set bits) of Bloom filter reaches a threshold or it 

can be recomputed periodically. 

Using Bloom filter will result in a false hit caused 

by the fact that the four hash values of a eURL are 

contributed from the hash values of other eURLs. To 

find out the false hit ratio in real cases, we performed a 

simulation by using http traces from the web site. Our 

simulation parameters are in Table 1 and the 

simulation results are shown in Fig. 3. Since it is 

assumed that there are 2 to 4 updates per second on 

server and the IR interval is 20 seconds, the total 

number of updates in an IR interval is 40 to 80. We 

can see that even under high update rate the false hit 

rate is still very small. All fault hit rates in the 

experiments are acceptable.  

To further reduce the size of broadcast IR, we 

propose a stateful approach that can save the 

bandwidth usage by removing the timestamps of some 

of the updated web pages in the next subsection.  

2.3.2. Reducing IR’s Timestamp size 

Different from previous stateless approaches, we 

propose a stateful approach which only needs two 

numbers for each updated web page on server, but has 

a large bandwidth reduction. The proposed stateful 

approach tries to remove the timestamp used in a 

(eURL, TS) pair without violating the cache validity 

condition. First consider the situation shown in Fig. 4. 

Suppose a web page is queried by a client after it is 

updated at the server in the current interval. When 
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receiving an IR, the timestamp of the web page 

maintained in client’s cache must be fresher than that 

encoded in IR. In this case, the (eURL, TS) pair is kept 

unchanged. However, consider when, in current 

interval, no query is sent to the server after the data 

item is updated. For the timestamp of the web page, 

there is no difference between using the IR’s issue 

timestamp and the real update time of the web page. 

This is because if the web page is cached in any client 

cache, it must be older than the timestamp encoded in 

IR. Therefore, for those updated web pages without 

query before next IR, we can use only one timestamp 

(the IR’s timestamp).  

In summary, the IR in the proposed scheme is 

augmented by two numbers, the number of web pages 

that use the old (eURL, TS) pair and the number of 

web pages that only use eURL. The web page with no 

timestamp encoded in IR uses the IR’s issue time as its 

timestamp. Two numbers are needed for each web 

page on the server, independent of how many clients 

connecting to the server. Compared with the true 

stateful approach that maintains full information of 

which data is cached by which client, our method is 

scalable. The performance results will be provided in 

the next section. 

3. Performance Evaluation 

In order to analyze the performance of our 

invalidation algorithms, we develop a model similar to 

that in [10]. We assume there is only one server that 

serves multiple clients. The simulation model contains 

multiple clients, an uplink channel, a downlink channel, 

and a server. Clients send queries to the server via the 

uplink channel, and receive results from the server via 

the downlink channel. The database can only be 

updated by the server while the queries are generated 

on the client side. Table 2 shows the system 

parameters used in our simulation. The database 

contains D pages. The size of each web page is O bits. 

The size of web page ID is Oid bits and timestamp is Tid

bits. 90% of web pages are in the hot update set, while 

10% of web pages are in the cold update set. 90% of 

requests are issued for the pages in the hot update set 

while the remaining 10% requests are issued for the 

pages in the cold update set. 

Effect of server’s update rate 

We run a simulation to find out the relation between 

the numbers of clients and update rates in Fig. 5. We 

calculate the number of updated pages that are queried 

after update denoted as UQAU and the number of all 

updated pages denoted as Uall in the current interval. 

The Y-axis represents the percentile of  UQAU/Uall.

We can see from the figure that the number of web 

pages queried after update is proportional to the 

number of clients. When the number of client reaches 

150, not shown in the figure, the percentage of web 

pages queried after update is 13.377% which is still 

acceptable. Update rates do not have much effect on 

our algorithm. 

Power consumption  

We also calculate the IR size by combining our 

approach with algorithms Timestamp [1] and UIR [4]. 

In Timestamp algorithm, the total IR size received by 

clients is w (Uall) (Oid+Tid). By integrating our 

algorithm with Timestamp algorithm, we have the IR 

size as follows. 

w Uall (Oid)+w UQAU Tid +w Fsize.

Fsize is the size of memory used to record two 

numbers, Uall and UQAU, that are the number of updated 

web pages and the number of web pages queried after 

their updates in each interval, respectively.  

In UIR algorithm, the total IR size received by 

clients is w Uall (Oid+Tid) + 1

1

n

(Pi) (Oid+Tid). By

integrating our algorithm with
 UIR algorithm, we have 

the following.

w Uall Oid  + w UQAU Tid    + w Fsize + 
1

1

n

(Pi) Oid  +
1

1

n

(PiQAU) Tid + n Fsize

IR interval is divided into n segments, so we will 

broadcast n 1 UIRs in each IR interval. Here,  

Pi =
1

1

n

j

total number of updates between Ti and Ti,j

PiQAU is the number of updated pages queried after 

their updates at the time between in Ti and Tij.We show 

that the simulated power consumption for the original 

Timestamp and UIR algorithms and Timestamp and 

UIR integrated with the proposed scheme in Fig. 6. 

Besides, an idealized cache invalidation scheme called 

Perfect Server is also developed for comparison. In 

Perfect Server, it is assumed that the Server has full 

knowledge of the contents in all clients’ caches. 

Consequently, the invalidation reports generated by 

Perfect Server will only contain the update information 

of the pages in the clients’ caches. As we can see in Fig. 

6 that UIR and TimeStamp algorithms consume more 

energy than Perfect Server. The Timestamp and UIR 

algorithms integrated with our scheme consume power 

40~47% less than the original counterparts. The 
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performance after integration is even better than 

Perfect Server that wastes more server load to record 

the individual client’s caches. Power consumed by the 

original and modified Timestamp and UIR algorithms 

do not increase as the number of clients grows. But 

power consumed by Perfect Server increases as the 

number of clients increases. This is because more and 

more pages are cached on the client sides and so server 

needs to broadcast more IRs to the clients. 

Effect of numbers of pages on the server 

In order to know whether the number of pages 

stored on the server side has effects on the number of 

pages queried after update or not, we run simulations 

with different numbers of pages 100000, 150000 and 

200000. The results are shown in Fig. 7. We observe 

that when the number of pages grows, the percentage 

of pages queried after update drops. As the number of 

pages on the server side grows, the probability that a 

client queries the same updated page decreases. 

4. Conclusion 

We proposed a framework to cache dynamic pages 

on the server side, proxy and client. Furthermore we 

use Bloom filter to efficiently encode which pages are 

stale. The proposed stateful approach combines the 

existing methods to reduce the IR size. The 

performance of the proposed method combined with 

existing Timestamp and UIR algorithms can consume 

power around 40~47% less than the original 

Timestamp and UIR Algorithms. 

Reference
[1] D. Barbara and T. Imielinski, “Sleepers and 

Workaholics: Caching Strategies in Mobile 

Environments,” Proc. of the 1994 ACM SIGMOD 
Conf, pp. 1-12, 1994. 

[2] B. Bloom, “Space/time Trade-offs in Hash Coding 

with Allowable Errors,” Communications of the 
ACM, vol. 13 , pp. 422-426, Jul. 1970. 

[3] K.S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. 

Agrawal. Enabling dynamic content caching for 

database-driven web sites. Proc. of the SIGMOD,

2001.

[4] G. Cao, “A Scalable Low-Latency Cache 

Invalidation Strategy for Mobile Environments,” 

ACM Int’l Conf. on Mobile Computing and 
Networking (MobiCom), pp. 200–209, Aug. 2000. 

[5] K. L. Chiang, “Design and Implementation of 

Caching Dynamic Web Pages,” Master thesis, Dept. 

of Information Management, Chung Hua University, 

Jul. 2003. 

[6] P. Deolasee, A. Katkar, A. Panchbudhe, K. 

Ramamritham and P. Shenoy, “Adaptive push-pull: 

disseminating dynamic web data,” Proc. of the tenth 
international conference on World Wide Web,

pp.265-274, May 2001. 

[7] V. Duvvuri, P. Shenoy and R. Tewari “Adaptive 

Leases: A Strong Consistency Mechanism for the 

World Wide Web,” Tec. Re.t TR99-41, Dep. of 

Computer Science, University of Massachusetts at 

Amherst, Jun. 1999. 

[8] M. Hamilton, A. Rouskov & D. Wessels. “Cache 

Digest Specification”, http://squid.nlanr.net/Squid/ 

CacheDigest/cache-digest-v5.txt 

[9] Squid internet object cache, http://squid.nlanr.net/. 

[10] K.-L. Tan, J. Cai and B. C. Ooi, “An Evaluation of 

Cache Invalidation Strategies in Wireless 

Environments,” IEEE Transactions on Parallel and 
Distributed Systems, vol.12 , pp.789-807, Aug. 2001. 

Fig. 1. The structure of dynamic web page caching system. 

Fig. 2. Maintaining cache consistency on the server side.  
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Table 1:  Simulation parameters for Bloom filter. 

Parameters Default Values 

Cache size 3000 pages 

Mean update rate on server 2, 3 or 4 per second 

% of pages in hot update set 10 

IR interval 20 seconds 

% of requests for pages in hot update set 90 

Timestamp size 64 bits 

IR window 10 intervals 

Number of clients 60 

Bloom filter

numbers of URLs

Fig. 3.  False hit rate of using Bloom filters. 

Fig. 4. The IR-based cache invalidation model. 

Table 2: System parameters 

Notation Definition Default values

D Total web pages 100,000 pages

q Query arrival rate per client 1 query/sec 

u Update arrival rate on the server 2 page/sec 

1 % of web pages in the cold update set 10 

2 % of requests for pages in cold update set 10 

1 % of web pages in the hot update set 90 

2 % of requests for pages in hot update set 90 

Cup Bandwidth of uplink channel 19.2 kB 

Cdown Bandwidth of downlink channel 100 kB 

L Periodic broadcast interval 20 sec 

w IR window 10 

O Object size 5 kB 

Oid Object ID size 64 bits 

Tid Timestamp size 64 bits 

C Number of clients 20  
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